Assignment 6.

1. Find the equation of the tangent to the curve defined by $x=\mathrm{e}^{t}+t, y=2 \mathrm{e}^{t}-t^{2}$ at the point where $t=0$.
2. Find the equation of the normal to the curve defined by $x y=x^{2}-\ln y$ at the point $(1,1)$.
3. Find the exact coordinates of the points on the curve $y=\left(x^{2}-x\right) \mathrm{e}^{-x}$ at which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$.
4. Determine all maximum and minimum points of the curve $y=2 \sin 2 x-\cos 4 x$ for which $0 \leq x \leq \pi$.
5. A curve is defined by $x=\sqrt{\sin \theta}$, and $y=\cos \theta$ for $0 \leq \theta \leq \pi$.
(a) Sketch this curve in a Cartesian plane.
(b) Express this curve as an implicit function.
(c) $(\boldsymbol{\dagger})$ Find the coordinates of the points on the curve which are furthest away from the origin.

Total mark of this assignment: $30+5$.
The symbol $(\boldsymbol{\dagger})$ indicates a bonus question. Finish other questions before working on this one.

